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Abstract
Exchange integrals for a screened Coulomb interaction of the Yukawa form with
the Thomas–Fermi wave vector expressed in terms of the total electron density
are calculated for transition metal, rare-earth and actinide atoms. The calculated
exchange interactions are in remarkable agreement with those obtained from
the local spin-density approximation.

Exchange interactions in the homogeneous electron gas have been studied both rigorously
and extensively and some of the results have been incorporated in atomic and solid-state
calculations via density functional theory [1], usually in the local spin-density approximation
(LSDA) [2]. A good approximation to the LSDA spin-polarization energy of an atom, in terms
of radial integrals and the partial spin moments, ml , of all open shells, is [3, 4]

ELSDA
SP = −1

4

∑
ll′

Jll′mlml′ (1)

where the LSDA atomic exchange integral matrices are given by

Jll′ = 2

3

∫
r2φ2

l (r)φ
2
l′(r)A[n(r)]/n(r) dr (2)

and A(r) is a function of the density which varies a little depending upon which version of
LSDA is used [5].

An alternative derivation of the spin-polarization energy, which predated the LSDA, was
due to Slater [6] and was based upon the Hartree–Fock approximation (HFA) with the orbitals
for a given spin in the (lm) representation assumed to be uniformly populated with occupation
numbers

n±
lm = q±

l /(2l + 1) (3)

where q±
l is the number of electrons with l-character and spin ±. Then the HFA spin-

polarization energy is

EHFA
SP = −1

4

∑
l,l′

Vll′mlml′ . (4)
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Although equations (1) and (4) have the same quadratic form, the exchange integrals, Vll′ , are
linear combinations of the radial Slater exchange integrals rather than functions of the electron
density:

Vll′ =
∑
k

(
l l′ k

0 0 0

)2

Gk(ll′ll′) (5)

where (· · ·) is a Wigner 3j -symbol. In the sum over k in equation (5), l + l′ + k must be
even; otherwise the 3j -symbol is zero. The approximation defined by equation (3) imposes
spherical symmetry and isolates the isotropic exchange interactions. More general expressions
for the spin-polarization energy have also been derived [7], particularly for the LDA + U

approximation [8], but equation (5) is suitable for a comparison of the HFA and LSDA.
There is no contribution to EHFA

SP from the spherical Coulomb integral, G0, between shells
since (

l l′ 0
0 0 0

)
= 0 for l �= l′.

However, within a shell,(
l l 0
0 0 0

)
= (2l + 1)−1/2

and the contribution to Vll is G0(llll)/(2l + 1). This contribution was omitted by Slater [6]
even for intra-shell exchange and has since been the subject of some controversy since it is
the self-exchange responsible for the self-interaction cancellation [9, 10], and is sometimes
regarded as not a true exchange interaction [11]. Its origin is physically very simple. For
non-integral occupation numbers an orbital is occupied by equal numbers of electrons (�0.5)
with spin up and spin down in the paramagnetic state, in which case the spin-up and spin-down
electrons interact. In the spin-polarized state, with just the spin-up orbitals occupied, this
self-interaction disappears and the energy gain appears as part of the spin-polarization energy.

Calculated exchange interactions based upon equation (5) are far too large since the
Coulomb interaction is unscreened in the HFA. Applications of the HFA, such as the LDA + U

approximation [8], are therefore plagued by the requirement to scale the HFA integrals in
some manner which is frequently empirical [12] or by means of a supercell calculation [13]. A
simple approximation for screening that may be incorporated in a self-consistent calculation is
therefore desirable since the GW -approximation [14] is difficult to implement. Norman [15]
used the simplest screened Coulomb interaction with a Yukawa form:

V (r, r′) = e−κ|r−r′ |
|r − r′| (6)

to calculate screened Slater integrals for Pr and U ions. Norman took the inverse screening
length, κ , to be an adjustable parameter and found the value required to fit analysis of atomic
spectroscopy experiments. In this letter we suggest an additional step—using Thomas–
Fermi [16] screening which delivers a position-dependent value of κ directly in terms of
the total density:

κ[n(r ′′)] = 2[3n(r ′′)/π ]1/6 (7)

where r ′′ = (r + r ′)/2. The screened interaction is then expanded in spherical functions:

V (r, r′) = −κ
∑
l

(2l + 1)jl(iκr<)h
(1)
l (iκr>)Pl(cos θ) (8)
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where, as usual, r<, r> refer to the lesser or greater of r, r ′, jl and h
(1)
l are spherical Bessel and

Hankel functions of imaginary argument. The screened radial Slater integrals are

Gk(ll′ll′) = −
∫ ∫

r2r ′2jk(iκr<)h
(1)
k (iκr>)Rl(r)Rl′(r

′)Rl(r
′)Rl′(r) dr dr ′. (9)

Figure 1 shows the calculated exchange integrals, equations (2) and (5), for free atoms of the
3d series. The unscreened HFA integrals are far too large, primarily due to the unscreened
G0-integrals. The strong screening of the G0-integrals plus the somewhat weaker screening
of the higher-order integrals leads to values of the HFA exchange (labelled ‘HF-scr’) of the
same order of magnitude as, but larger than, the values obtained from the LSDA. The screened
G0-contribution to the exchange integrals is about half of the total. When it is removed, the
Hartree–Fock (‘HF-exch’) and LSDA (‘LSDA-exch’) exchange integrals are almost identical.
The calculated integrals for free atoms of the other transition metal series and the actinides
(figure 2) follow the same pattern. When the G0-contribution is subtracted from the screened
HFA (‘HF-scr’) contribution the LSDA result is recovered.
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Figure 1. The exchange integrals for the 3d shell calculated from equations (2) and (5). ‘HF’
denotes unscreened Hartree–Fock integrals, ‘HF-scr’ denotes screened Hartree–Fock integrals
(including the screened G0-contribution), whereas in ‘HF-exch’, G0 is excluded. ‘LSDA-exch’
labels the LSDA exchange—or Stoner parameter.
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Figure 2. The exchange integrals for the 5f actinide shell calculated from equations (2) and (5).
The labels are defined in the caption to figure 1.
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In the rare-earth metals and their compounds the conduction electrons transmit the
exchange interactions between local atomic moments. The local exchange interactions between
rare-earth 4f and conduction electrons at the rare-earth sites may be calculated from equation (2)
or equation (5). The LSDA exchange integrals are known to produce excellent results for
exchange splitting of the conduction bands and conduction electron polarization induced by
the 4f electrons. For example, the calculated conduction electron polarization of Gd metal
is 0.65 µB [17] compared with a measured 0.63 µB [18] and for several series of rare-earth
compounds the LSDA yields excellent results for the conduction electron moment [19].

Attempts have also been made to derive 4f–conduction electron exchange interactions
from the HFA. Li et al [20] have derived the following expression for the isotropic exchange
interaction between the 4f and other angular momentum states:

J4f−nl = 1√
7(2l + 1)

[∑
k

〈f ||C(k)||l〉
{

3 3 0
l l k

}2

Gk(4f, nl)

]
(10)

where {· · ·} is a Wigner 6j -symbol. It is easy to show, by evaluating the reduced matrix
element of the spherical tensor, C(k), and expanding the 6j -symbol, that J4f−nl is identical to
V3l in equation (5). The problem that arises with this theory is that the calculated unscreened
HFA exchange integrals are far too large, even though G0 does not contribute to inter-shell
exchange, especially for the most important 4f–5d exchange. The calculated 4f–5d and 4f–5p
integrals for free atoms of Ce, Pr and Gd are listed in table 1. Most of the conduction electron
spin in the rare-earth metals is carried by the 5d states; therefore the 4f–5d exchange integrals
are critical. That the unscreened HFA 4f–5d exchange integral is far too large was used as an
argument against using the HFA for the rare earths [19]. However, the screened integrals agree
almost perfectly with the corresponding LSDA integrals. Use of the unscreened integrals led
Li et al [20] to use unphysical averaging of the s, p and d exchange interactions to reduce the
magnitude of the effective exchange—with screened exchange interactions this is no longer
necessary.

Table 1. Calculated exchange integrals (in meV) for Ce, Pr and Gd. ‘Li et al’: taken from
reference [20] for the 4fx5d16s16p1 configuration. The present calculations were made for the
4fx5d26s16p0 configuration and ‘HF’ refers to the unscreened HFA (equation (5)), ‘S-HF’ to the
screened HFA (equation (5)) and ‘LSDA’ to the local spin-density approximation (equation (2)).

Ce Pr Gd

4f–5d
Li et al 230 221 189
HF 208 197 160
S-HF 112 108 93
LSDA 115 108 85

4f–6p
Li et al 18 17 15
HF 20 20 17
S-HF 16 15 13
LSDA 20 18 14

The reason that the 4f–5d exchange integrals decrease across each series is the contraction
of the 4f shell. The overlap between 4f and 5d densities occurs over a relatively small region
of space corresponding to the outer part of the 4f density and the inner part of the 5d density.
As the 4f shell contracts the region of overlap decreases.

Experience has shown that the LSDA integrals lead to splittings of energy bands and
calculated magnetic moments that are in better agreement with measurements than if the
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HFA is used [21]. The results of research on the magnetism of highly correlated electron
systems, however, suggest that the LSDA runs into difficulties when the nodal properties of
the wave functions become important to the exchange interactions [8]. Here we have shown
that the simplest possible parameter-free approximation to screening—a variable Thomas–
Fermi screening length—produces reasonable results for exchange integrals throughout the
periodic table, suggesting that ab initio calculations of HFA exchange in solids are a practical
possibility.

The author has benefited from discussions with M R Norman and L Severin.
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